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Abstract—Extreme weather is a leading cause of power outages in 
the U.S., and preventive operation is an effective approach to 
reduce outages in the operations phase. Currently, a common 
industry practice for preventive operation is to turn on all the 
units in a system during extreme weather. In this study, a 
preventive unit commitment (UC) model is presented to reduce 
transmission-induced outages during hurricanes. In this model, 
transmission contingency scenarios are generated based on wind 
speed, and then these scenarios are used in a stochastic UC model 
to obtain UC results with a goal of reducing outages in the system. 
The presented preventive operations method is compared with 
the business-as-usual model and the turn-on-all-units method, 
and results show that the presented method can reduce outages 
from the business-as-usual model as effective as the turn-on-all-
units method with a much lower operating cost. 

Index Terms—Hurricane, power outage, power system resilience, 
stochastic optimization, transmission outage. 

I. NOMENCLATURE

Indices 
l Coefficient compared with limit state.
𝑘𝑘 Transmission line. 
𝑔𝑔 Generator. 
𝑛𝑛 Node. 
𝑚𝑚 Indices of tower locations in the transmission line. 
𝑠𝑠 Scenario. 
𝑠𝑠𝑠𝑠𝑔𝑔 Segment of linearized generator cost function. 

Sets 
𝜎𝜎+(𝑛𝑛) Transmission lines with their “to” buses 

connected to node 𝑛𝑛. 
𝜎𝜎−(𝑛𝑛) Transmission lines with their “from” buses 

connected to node 𝑛𝑛. 
𝑔𝑔(𝑛𝑛) Generators connected to node 𝑛𝑛. 

Variables 
𝐹𝐹𝑘𝑘,𝑠𝑠,𝑡𝑡 Real power flow through transmission line 𝑘𝑘in 

scenarios 𝑠𝑠 at time 𝑡𝑡. 
𝐿𝐿𝑛𝑛,𝑠𝑠,𝑡𝑡
𝐿𝐿  Load loss at node 𝑛𝑛in scenario𝑠𝑠 at time 𝑡𝑡. 

𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡 Real power generation of generator 𝑔𝑔 in scenario𝑠𝑠 
at time 𝑡𝑡. 

𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑂𝑂  Over-generation of generator 𝑔𝑔 in scenario𝑠𝑠 at 

time 𝑡𝑡. 
𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑠𝑠𝑠𝑠𝑔𝑔 Real power generation of generator 𝑔𝑔 in scenario𝑠𝑠 

in segment 𝑠𝑠𝑠𝑠𝑔𝑔 at time 𝑡𝑡. 
𝑣𝑣𝑔𝑔,𝑡𝑡 Startup variable (1: generator 𝑔𝑔 starts up at time 𝑡𝑡; 

0: generator 𝑔𝑔 does not start up at time 𝑡𝑡.) 
𝑤𝑤𝑔𝑔,𝑡𝑡 Shutdown variable (1: generator 𝑔𝑔 shuts downat 

time 𝑡𝑡; 0: generator 𝑔𝑔 does not shut down at time 
𝑡𝑡.) 

𝜃𝜃𝑛𝑛,𝑠𝑠,𝑡𝑡 Voltage angle at bus 𝑛𝑛 in scenario𝑠𝑠 at time 𝑡𝑡. 
𝜃𝜃𝑓𝑓𝑓𝑓,𝑘𝑘,𝑠𝑠,𝑡𝑡 Voltage angle at the “from” node of line 𝑘𝑘in 

scenario𝑠𝑠 at time 𝑡𝑡. 
𝜃𝜃𝑡𝑡𝑡𝑡,𝑘𝑘,𝑠𝑠,𝑡𝑡 Voltage angle at the “to” node of line 𝑘𝑘in 

scenario𝑠𝑠 at time 𝑡𝑡. 
Parameters 
𝑏𝑏𝑘𝑘 Susceptance of transmission line 𝑘𝑘. 
𝑐𝑐𝑔𝑔,𝑠𝑠𝑠𝑠𝑔𝑔
𝑙𝑙𝑙𝑙𝑛𝑛𝑠𝑠𝑙𝑙𝑓𝑓 Linear cost of generator 𝑔𝑔 in segment 𝑠𝑠𝑠𝑠𝑔𝑔. 
𝑐𝑐𝐿𝐿 Cost of load loss ($/MWh). 
𝑐𝑐𝑔𝑔𝑁𝑁𝐿𝐿 No load cost of generator 𝑔𝑔. 
𝑐𝑐𝑂𝑂 Cost of over generation ($/MWh). 
𝑐𝑐𝑔𝑔𝑆𝑆𝐷𝐷 Shutdown cost of generator 𝑔𝑔. 
𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆 Startup cost of generator 𝑔𝑔. 
𝐹𝐹𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚  Thermal/stability limit of transmission line 𝑘𝑘. 
𝐿𝐿𝑛𝑛,𝑠𝑠,𝑡𝑡 Load at bus 𝑛𝑛 in scenario 𝑠𝑠 at time 𝑡𝑡. 
𝑁𝑁𝑏𝑏 Number of buses in s system. 
𝑁𝑁𝑔𝑔 Total number of generators. 
𝑁𝑁𝑠𝑠 Number of scenarios. 
𝑁𝑁𝑠𝑠𝑠𝑠𝑔𝑔 Number of segments for the linearized generator 

cost function. 
𝑝𝑝𝑘𝑘,𝑡𝑡𝑘𝑘 Probability of line 𝑘𝑘 to fail at time 𝑡𝑡𝑘𝑘. 
𝑝𝑝𝑠𝑠 Probability of scenario 𝑠𝑠. 
𝑃𝑃𝑔𝑔𝑚𝑚𝑙𝑙𝑚𝑚 Upper generation limit of generator 𝑔𝑔. 
𝑃𝑃𝑔𝑔𝑚𝑚𝑙𝑙𝑛𝑛 Lower generation limit of generator 𝑔𝑔. 
𝑃𝑃𝑔𝑔
𝑠𝑠𝑠𝑠𝑔𝑔,𝑚𝑚𝑙𝑙𝑚𝑚 Upper generation limit of generator 𝑔𝑔 in segment 

𝑠𝑠𝑠𝑠𝑔𝑔. 
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𝑅𝑅𝑅𝑅𝑔𝑔 Hourly ramp-rate for generator 𝑔𝑔. 
𝑇𝑇 Length of the investigated time period. 
𝑇𝑇𝐹𝐹  Number of time periods with different 

probabilities of transmission line failure. 
𝑇𝑇𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛 Minimum down time for generator 𝑔𝑔. 
𝑇𝑇𝑔𝑔
𝑢𝑢𝑢𝑢 Minimum up time for generator 𝑔𝑔. 
𝑧𝑧𝑘𝑘,𝑠𝑠,𝑡𝑡 Transmission line 𝑘𝑘’s status at time 𝑡𝑡 in scenario 

𝑠𝑠 (1: line is closed; 0: line is open). 
∆𝜃𝜃𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚 Maximum value of bus voltage angle difference 

to maintain stability for line 𝑘𝑘. 
∆𝜃𝜃𝑘𝑘𝑚𝑚𝑙𝑙𝑛𝑛 Minimum value of bus voltage angle difference to 

maintain stability for line 𝑘𝑘. 
  

II. INTRODUCTION 
In the U.S., severe weather is one of the most significant 

causes of power outages [1]. Outages caused by severe weather 
can be not only wide-spread but also long-lasting. Take the 
hurricanes that occurred in 2017 as examples, four strong 
hurricanes, Harvey, Irma, Maria, and Nate, made U.S. landfalls, 
and more than eight states were affected. In Florida, 48% of 
electricity customers experienced outages due to Hurricane 
Irma, so do 22% of customers in Georgia [2]-[4]. The power 
system of Puerto Rico was severely damaged by Hurricane 
Maria, and more than half of its electricity customers 
experienced outages for more than 3 months [5], [6]. 

In order to reduce outages, different methods can be 
adopted. The first one is system hardening, which happens in 
the planning phase of the power system. Using underground 
transmission lines and stronger poles, and considering future 
adverse events in the planning phase both belong to this 
category [7]-[9]. The second method is through an optimized 
restoration procedure. When outages occur, different 
restoration resources can be optimally used to restore power in 
a relatively fast manner [10]-[15]. The third method is through 
preventive operation, which means system operators dispatch 
power considering possible contingencies of the system. 
Currently, this is an under-explored field, and most system 
operators perform preventive operations based on engineering 
judgments, such as turning on all the generation units when a 
hurricane occurs. A resilience analysis for complex engineering 
systems is presented in [16], however, the resilience data is not 
integrated into day-ahead power system operations in the 
model. A proactive operation method is presented in [17], 
however, this study uses a generic fragility curve for 
infrastructure, while in reality infrastructures with different 
designs have very different fragility curves. A preventive 
operation method with fragility analysis is briefly discussed in 
[18], however, it is not compared with other operation heuristics 
that system operators use. Thus, there is a need to study the 
preventive operation technique in further detail, and compare it 
with current industry practices, both in terms of its effectiveness 
in reducing outages and cost-effectiveness. 

In this paper, a preventive operation method is discussed in 
detail. This method includes two parts, one is the fragility 
analysis of the infrastructure, and the second part is the 
preventive unit commitment (UC) model. In this method, 

weather data is used to perform fragility analysis of the critical 
infrastructure, and then contingency scenarios are generated 
based on the failure probabilities of the infrastructure. Then the 
scenarios are used in a stochastic optimization model to provide 
UC solutions that can effectively reduce outages. The method 
is compared with a common industry practice, which is turning 
all generation units on in the face of severe weather, or, the all-
units-on method. Case studies were carried out on an IEEE 118-
bus test system, part of which was mapped to the Florida 
transmission system, using historical wind speed data during 
Hurricane Irma. Results show that the presented preventive 
operation method can reduce outages by 30%-50% from the 
business-as-usual model, in which system operators dispatch 
the generation without considering possible contingencies 
caused by severe weather, and its effectiveness in reducing 
outages is similar to that of the all-units-on methods, but the 
operation cost of achieving such a reduction in outages is about 
40% lower than the all-units-on method.  

The rest of this paper is organized as follows. The 
preventive UC model is presented in Section III, and the 
scenario generation process is presented in detail in Section IV. 
The presented preventive operation method is compared with 
the BAU model and the all-units-on method in Section V, and 
conclusions are drawn in Section VI. 

III. THE PREVENTIVE UC MODEL 
The preventive optimization model is based on a DC power 

flow UC formulation, considering different contingency 
scenarios caused by transmission line outages. Over generation 
and load loss are allowed but are penalized a with a high cost in 
the objective function. Using this model, a preventive operation 
plan can be obtained for day-ahead market to reduce losses 
caused by load loss or over generation when extreme weather, 
like a hurricane, occurs. 

The formulation of the problem is shown in (1)–(14). The 
objective function is expressed by (1), which minimizes the 
dispatch cost of the system considering generation dispatch, 
over generation and load loss. Generation limits are expressed 
by (2) – (4); generation costs were calculated using a piece-wise 
linear cost function. DC power flow constraints are expressed 
by (5) and (6); when a transmission line is out, both its 
susceptance and thermal limit are set to 0 using the binary 
integer parameter 𝑧𝑧𝑘𝑘,𝑡𝑡 . (7) is the voltage angle stability 
constraint for each transmission line, and (8) sets the voltage 
angle of the reference bus to 0. (9) is the node power balance 
constraint, in which over generation and load loss are included. 
(10) and (11) calculates the start-up and shut-down variables; 
(12) is the hourly ramping limit for each generator; and (13) and 
(14) are the minimum up and down time constraints for each 
generator. Since contingencies are modelled explicitly, reserves 
are not modeled in this formulation. 
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𝑠𝑠𝑠𝑠𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔

𝑠𝑠𝑠𝑠𝑔𝑔,𝑚𝑚𝑙𝑙𝑚𝑚 (3) 
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𝑣𝑣𝑔𝑔,𝑡𝑡 + 𝑤𝑤𝑔𝑔,𝑡𝑡 ≤ 1 (11) 
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𝑢𝑢𝑢𝑢�𝑢𝑢𝑔𝑔,𝑚𝑚 − 𝑢𝑢𝑔𝑔,𝑚𝑚−1�,  

 2 ≤ 𝑚𝑚 ≤ 𝑇𝑇 − 𝑇𝑇𝑔𝑔
𝑢𝑢𝑢𝑢 + 1 

(13) 

∑ (1 − 𝑢𝑢𝑔𝑔,𝑡𝑡)
𝑚𝑚+𝑇𝑇𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−1
𝑡𝑡=𝑚𝑚 ≥ 𝑇𝑇𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛�𝑢𝑢𝑔𝑔,𝑚𝑚−1 − 𝑢𝑢𝑔𝑔,𝑚𝑚�,

  
2 ≤ 𝑚𝑚 ≤ 𝑇𝑇 − 𝑇𝑇𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛 + 1 

(14) 

 

IV. CONTINGENCY SCENARIO GENERATION 
Since the actual transmission system data of Florida is 

confidential, case studies were carried out on a synthetic Florida 
transmission system using real wind speed during Hurricane 
Irma. In this study, part of an IEEE 118-bus test system was 
mapped to the Florida transmission system, as Fig. 1 shows, and 
the historical wind speed during Hurricane Irma was obtained 
from the National Hurricane Center [19], as Fig. 2 shows. 

Using the historical wind speed during Hurricane Irma, a 
fragility analysis was performed on three types of transmission 
towers, designed at wind speeds levels, 120 miles per hour 
(mph), 140 mph, and 150 mph, respectively. The tower is a 220-
kV suspension tower, designed based on ASCE Manuals and 
Reports on Engineering Practice No.74 (Manual 74): 
Guidelines for Electrical Transmission Line Structural Loading 
[20]. This basic wind speed is a 3-second gust wind in a 50-year 
return period.  

After designing the transmission towers, the fragility curve 
of towers is obtained. The fragility analysis of transmission 
tower includes three steps. First, a finite element model of tower 
1 is built by ANSYS. Wind speed is generated by Monte-Carlo 
simulation and add it on the tower. The damage probability of 
a transmission tower is obtained as follows.  

𝐹𝐹𝑅𝑅(𝑉𝑉) = 𝑃𝑃[𝑙𝑙 > 𝐿𝐿𝐿𝐿｜𝑉𝑉10 = 𝑉𝑉]    (15) 

The limit state (LS) of a transmission tower is defined as the 
transmission tower’s top drift. By analyzing the capacity curve 
of a transmission tower, 1.5% drift is chosen as the limit state. 
Secondly, the wind field is developed by modeling the 
horizontal wind profile. The gradient wind speed is simplified 
as a function of the radius. Finally, as the failure probability of 
the individual transmission tower is obtained, the transmission 
line’s failure probability can be calculated. As a transmission 
line is a serial system, the transmission line can only survive 
when all the transmission towers of this line survive. Therefore, 
the transmission line’s failure probability 𝑃𝑃[𝐹𝐹𝐿𝐿, 𝑘𝑘]  can be 
calculated as follows.  

𝑃𝑃[𝐹𝐹𝐿𝐿, 𝑘𝑘] = 1 − 𝑃𝑃[𝐿𝐿𝐿𝐿, 𝑘𝑘] = 1 −∏ 𝐹𝐹𝑅𝑅,𝑚𝑚(𝑉𝑉𝑚𝑚)𝑁𝑁𝑇𝑇
𝑚𝑚=1   (16) 

𝑃𝑃[𝐿𝐿𝐿𝐿, 𝑘𝑘] is the survival probability of a transmission line 
and 𝐹𝐹𝑅𝑅,𝑚𝑚(𝑉𝑉𝑚𝑚) is 𝑚𝑚𝑡𝑡ℎ  transmission tower’s failure probability 
of each transmission line. 

 The three types of towers are named as Tower 1, Tower 2 
and Tower 3, respectively, and the probability of failure for 
each transmission tower was obtained using Equation (16). In 
the case studies, three conditions were examined. In the first 
condition, Tower 1 was used for the whole transmission system. 
In the second condition, Tower 2 was used for the whole 
transmission system. And in the third condition, Tower 3 was 
used for the whole transmission system. Based on the 
probabilities of failure of each type of transmission tower 
during each hour, the failure probabilities of transmission lines 
under the three conditions was calculated, shown in TABLE I-
TABLE III, respectively. 

 
Fig. 1. The mapping of the IEEE 118-bus test system 

 

 
Fig. 2. Wind speed during Hurricane Irma 

 



TABLE I  
TRANSMISSION LINE FAILURE PROBABILITIES IN CONDITION 1 

Line 
Number 5PM 8PM 11 PM 2AM 5AM After 

8AM 
69-70 0.00 0.00 0.00 0.00 0.00 0.91 
69-75 0.00 0.00 0.00 0.00 0.00 0.97 
69-77 0.00 0.00 0.99 1.00 1.00 1.00 
78-77 0.00 0.00 0.90 1.00 1.00 1.00 
82-77 0.00 0.00 0.83 1.00 1.00 1.00 
82-96 0.00 0.00 0.08 1.00 1.00 1.00 
82-83 0.00 0.00 0.76 1.00 1.00 1.00 
85-83 0.00 0.00 0.04 1.00 1.00 1.00 
84-83 0.00 0.00 0.53 1.00 1.00 1.00 
77-80 0.00 0.00 1.00 1.00 1.00 1.00 
97-80 1.00 1.00 1.00 1.00 1.00 1.00 
98-80 1.00 1.00 1.00 1.00 1.00 1.00 
99-80 1.00 1.00 1.00 1.00 1.00 1.00 
80-79 0.04 0.04 0.99 1.00 1.00 1.00 
80-81 0.04 0.04 1.00 1.00 1.00 1.00 
65-68 1.00 1.00 1.00 1.00 1.00 1.00 
68-116 1.00 1.00 1.00 1.00 1.00 1.00 
66-65 0.00 0.24 0.81 0.99 0.99 0.99 
69-68 0.09 0.95 0.98 1.00 1.00 1.00 

TABLE II  
TRANSMISSION LINE FAILURE PROBABILITIES IN CONDITION 2 

Line 
Number 5PM 8PM 11PM 2AM 5AM After 

8AM 
69-70 0.00 0.00 0.00 0.00 0.00 0.71 
69-75 0.00 0.00 0.00 0.00 0.00 0.86 
69-77 0.00 0.00 0.86 1.00 1.00 1.00 
78-77 0.00 0.00 0.79 1.00 1.00 1.00 
82-77 0.00 0.00 0.58 1.00 1.00 1.00 
82-96 0.00 0.00 0.04 1.00 1.00 1.00 
82-83 0.00 0.00 0.42 1.00 1.00 1.00 
85-83 0.00 0.00 0.02 1.00 1.00 1.00 
84-83 0.00 0.00 0.31 1.00 1.00 1.00 
77-80 0.00 0.00 0.98 1.00 1.00 1.00 
97-80 1.00 1.00 1.00 1.00 1.00 1.00 
98-80 1.00 1.00 1.00 1.00 1.00 1.00 
99-80 1.00 1.00 1.00 1.00 1.00 1.00 
80-79 0.02 0.02 0.92 1.00 1.00 1.00 
80-81 0.02 0.02 1.00 1.00 1.00 1.00 
65-68 1.00 1.00 1.00 1.00 1.00 1.00 
68-116 1.00 1.00 1.00 1.00 1.00 1.00 
66-65 0.00 0.12 0.66 0.97 0.97 0.97 
69-68 0.05 0.82 0.89 1.00 1.00 1.00 

TABLE III  
TRANSMISSION LINE FAILURE PROBABILITIES IN CONDITION 3 

Line 
Number 5PM 8PM 11PM 2AM 5AM 8AM After 

11AM 
69-77 0.00 0.00 0.00 1.00 1.00 1.00 1.00 
78-77 0.00 0.00 0.00 1.00 1.00 1.00 1.00 
82-77 0.00 0.00 0.69 1.00 1.00 1.00 1.00 
82-96 0.00 0.00 0.00 0.30 0.30 0.94 0.99 
82-83 0.00 0.00 0.00 1.00 1.00 1.00 1.00 
85-83 0.00 0.00 0.00 0.24 0.24 0.25 0.25 
84-83 0.00 0.00 0.42 0.99 1.00 1.00 1.00 
77-80 0.00 0.00 0.00 0.17 0.45 0.99 0.99 
97-80 0.00 0.81 0.81 0.98 1.00 1.00 1.00 
98-80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
99-80 0.01 0.01 0.48 1.00 1.00 1.00 1.00 
80-79 0.00 0.00 0.00 0.60 0.60 0.86 0.86 
80-81 0.00 0.00 0.00 0.17 0.42 0.75 0.75 
65-68 0.92 0.92 0.92 0.92 0.92 0.92 0.92 
68-116 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
66-65 0.00 0.22 0.22 0.22 0.22 0.22 0.22 
69-68 0.00 0.00 0.00 0.99 0.99 0.99 0.99 

 

Transmission line contingency scenarios are generated 
based on the combination of different transmission line failures 
that happen at different times during the hurricane, illustrated 
in Fig. 3. The total number of scenarios can be calculated as 
follows. 

𝑁𝑁𝑠𝑠 = (𝑇𝑇𝐹𝐹 + 1)𝑁𝑁𝑏𝑏𝑏𝑏     (17) 
Given that transmission line 𝑘𝑘 fails at 𝑡𝑡𝑘𝑘 in scenario 𝑠𝑠, the 

probability for each scenario can be calculated as follows. 
𝑝𝑝𝑠𝑠 = ∏ �𝑝𝑝𝑘𝑘,𝑡𝑡𝑘𝑘 ∏ (1 − 𝑝𝑝𝑘𝑘,𝑡𝑡)

𝑡𝑡𝑘𝑘−1
𝑡𝑡=𝑡𝑡𝐻𝐻 �𝑁𝑁𝑏𝑏𝑏𝑏

𝑘𝑘=1   (18) 
According to Equation (15), the total number of scenarios is 

1.14 × 1016  in Condition 1 and 2, and 2.24 × 1015 in 
Condition 3. It is computationally intractable to consider so 
many scenarios in a stochastic optimization problem, thus, the 
number of scenarios needs to be reduced to a reasonable level. 
According to [21], probability-based scenario selection is an 
effective and computationally efficient method. Thus, in this 
study, scenarios are selected based on their likelihood to occur. 
100 scenarios with the largest probabilities under each 
condition were considered in the optimization problems.  

 
Fig. 3. Contingency scenario generation method 

V. OUTAGE COMPARISON FOR THREE OPERATION 
METHODS 

Based on the selected 100 scenarios, the preventive 
operation model presented in Section III can be implemented to 
obtain the UC results that help reduce transmission-induced 
outages. Then the UC is adopted in a large number of scenarios 
which cover more than 95% of the scenarios with probabilities 
of larger or equal to 1 × 10−5. The numbers of scenarios tested 
under the three conditions are shown in TABLE IV. Scenarios 
with a probability of less than 1 × 10−5 are not tested, because 
it is computationally intractable to test it over a number of 1015-
1016 scenarios. In these test cases, load shedding was penalized 
with a cost of $10,000/MWh. Under the three conditions, the 
expected outage, generation dispatch cost without penalties, 
and generation dispatch cost with penalties are obtained under 
each condition, as TABLE V shows. 

TABLE IV  
NUMBER OF SCENARIOS TESTED UNDER THE THREE CONDITIONS 

Condition Number of 
Scenarios 

Probability covered among scenarios 
with probabilities of ≥ 𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟓𝟓 

Condition 1 1000 98.78% 
Condition 2 2000 95.84% 
Condition 3 7000 95.10% 
   
   



TABLE V  
THE EXPECTED OUTAGE AND GENERATION DISPATCH COST FROM THE 

PREVENTIVE OPERATION CASES 

Conditions 
Expected load 
shedding 
(MWh/day) 

Expected 
dispatch cost 
with penalty 
(million $/day) 

Expected 
dispatch cost 
with penalty 
(million $/day) 

Condition 1 5880.48 59.97 1.16 
Condition 2 5810.57 59.26 1.16 
Condition 3 2586.54 27.02 1.16 

In order to validate the effectiveness of the preventive 
operation method, expected load shedding and dispatch costs 
are also obtained using two other operation methods: (1) the 
BAU method, in which the generation units are committed 
without considering the possible contingencies that may be 
caused by the upcoming severe weather; (2) the all-units-on 
method, in which all the generation units are committed all 
through the day to deal with the severe weather. The expected 
outage and dispatch costs are obtained using the same number 
of scenarios presented in TABLE IV, and the results from the 
two operation methods are shown in TABLE VI and TABLE 
VII, respectively. From the results, it can be seen that, with a 
penalty level of $10,000/MWh for load shedding, the presented 
preventive operation method provides a lower expected 
generation dispatch cost with penalties included than the all-
units-on method, which means the presented preventive 
operation method has a better overall economic benefit than the 
all-units-on method in this case. 

The expected load shedding is compared intuitively in Fig. 
4, and the dispatch costs from the system operator’s perspective 
are compared in Fig. 5. From the two figures, it can be seen that 
both the preventive UC model and the all-units-on methods can 
significantly reduce transmission-induced outages compared to 
the BAU method, and their effectiveness in reducing outages is 
at a similar level. However, the outage reduction from the all-
units-on method comes at a cost of high generation dispatch 
cost, while the preventive UC model is able to effectively 
reduce outages at a much lower operating cost than the all-
units-on method. 

TABLE VI  
THE EXPECTED OUTAGE AND GENERATION DISPATCH COST FROM THE BAU 

CASES 

Conditions 
Expected load 
shedding 
(MWh/day) 

Expected 
dispatch cost 
with penalty 
(million $/day) 

Expected 
dispatch cost 
with penalty 
(million $/day) 

Condition 1 8879.16 89.80 1.01 
Condition 2 8707.47 88.09 1.02 
Condition 3 4736.63 48.41 1.05 

TABLE VII  
THE EXPECTED OUTAGE AND GENERATION DISPATCH COST FROM THE ALL-

UNITS-ON CASES 

Conditions 
Expected load 
shedding 
(MWh/day) 

Expected 
dispatch cost 
with penalty 
(million $/day) 

Expected 
dispatch cost 
with penalty 
(million $/day) 

Condition 1 5879.34 60.67 1.88 
Condition 2 5808.85 59.96 1.88 
Condition 3 2562.94 27.48 1.85 

 

 
Fig. 4. Outage comparison of cases using the three operation methods 

 
Fig. 5. A comparison of dispatch cost for the three operation methods 

VI. CONCLUSIONS 
In this paper, a preventive operation method to reduce 

transmission-induced outages during hurricanes is presented. 
This method makes full use of the available weather data to 
perform fragility analysis of the infrastructure, based on which 
the contingency scenarios can be generated and considered in a 
stochastic optimization model. This method is compared with 
two other methods, namely, the BAU and all-units-on methods, 
and results show that the preventive UC model is able to reduce 
outages with similar effectiveness as the all-units-on method, 
but at a much lower operating cost. Future work includes 
applying this method in large-scale power systems, which will 
enable the application of this method in real-world systems. 
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